Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(11): 113901, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852540

RESUMO

High-pressure anvil cell nuclear magnetic resonance (NMR) studies of single crystals are challenging, but they can offer much insight into material properties. A microcoil inside the high-pressure region that encloses the crystal offers a good signal-to-noise ratio, but special care has to be taken to warrant hydrostatic conditions or to avoid rupture of the crystal or coil. By introducing precise monitoring of the height and diameter of the pressurized sample chamber, this can be ensured, and the data reveal the behavior of the sample chamber under pressure. While its total volume is given by the compression of the enclosed pressure transmitting fluid, the aspect ratio of the cylindrical chamber changes considerably. 63Cu and 17O NMR of two differently doped single crystals of YBa2Cu3O7-δ at pressures of up to about 4.4 GPa show the function of the cell, and orientation dependent spectra prove the soundness of the arrangement.

2.
Phys Chem Chem Phys ; 21(20): 10594-10602, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31074753

RESUMO

The Zintl phase deuterides CaSiD4/3, SrSiD5/3, BaSiD2, SrGeD4/3, BaGeD5/3 and BaSnD4/3 were investigated by nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to reliably determine element-deuterium bond lengths. These compounds show deuterium bound to the polyanion and deuteride ions in tetrahedral cationic voids. With 2H-NMR experiments we characterised the individual signals of the two distinct crystal sites. Quadrupolar coupling constants (CQ) of the anion-binding site were determined as 58 to 78 kHz (Si compounds), 51 to 61 kHz (Ge compounds) and 38 kHz (Sn compound). These values agree well with the quadrupole couplings derived from DFT using optimized structural models. We further calculated the general element-deuterium distance dependency of CQ using DFT methods that allow an accurate determination of bond lengths via the 2H quadrupole interaction. The thus determined bond lengths are evaluated as d(Si-D) = 1.53-1.59 Å, d(Ge-D) = 1.61-1.65 Å and d(Sn-D) = 1.86 Å. Chemical shifts of the anion-binding site range from 0.3 to 1.3 ppm. The isotropic chemical shifts of the tetrahedral sites are 5.1 ppm (CaSiD4/3), 7.0 to 10.0 ppm (Sr compounds) and 10.7 to 11.6 ppm (Ba compounds).

3.
J Magn Reson ; 302: 34-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30953924

RESUMO

Three-dimensional topological insulators are an important class of modern materials, and a strong spin-orbit coupling is involved in making the bulk electronic states very different from those near the surface. Bi2Se3 is a model compound, and 209Bi NMR is employed here to investigate the bulk properties of the material with focus on the quadrupole splitting. It will be shown that this splitting measures the energy band inversion induced by spin-orbit coupling in quantitative agreement with first-principle calculations. Furthermore, this quadrupole interaction is very unusual as it can show essentially no angular dependence, e.g., even at the magic angle the first-order splitting remains. Therefore, it is proposed that the magnetic field direction is involved in setting the quantization axis for the electrons, and that their life time leads to a new electronically driven relaxation mechanism, in particular for quadrupolar nuclei like 209Bi. While a quantitative understanding of these effects cannot be given, the results implicate that NMR can become a powerful tool for the investigation of such systems.

4.
Inorg Chem ; 56(3): 1061-1071, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28098994

RESUMO

Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3-x and BaSnD4/3-x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge-D) = 1.521(9) Å and d(Sn-D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2-x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si-D) = 1.641(5) Å.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...